Monday, July 11, 2011

The Printed World

FILTON, just outside Bristol, is where Britain’s fleet of Concorde supersonic airliners was built. In a building near a wind tunnel on the same sprawling site, something even more remarkable is being created. Little by little a machine is “printing” a complex titanium landing-gear bracket, about the size of a shoe, which normally would have to be laboriously hewn from a solid block of metal. Brackets are only the beginning. The researchers at Filton have a much bigger ambition: to print the entire wing of an airliner.

Far-fetched as this may seem, many other people are using three-dimensional printing technology to create similarly remarkable things. These include medical implants, jewellery, football boots designed for individual feet, lampshades, racing-car parts, solid-state batteries and customised mobile phones. Some are even making mechanical devices. At the Massachusetts Institute of Technology (MIT), Peter Schmitt, a PhD student, has been printing something that resembles the workings of a grandfather clock. It took him a few attempts to get right, but eventually he removed the plastic clock from a 3D printer, hung it on the wall and pulled down the counterweight. It started ticking.

Engineers and designers have been using 3D printers for more than a decade, but mostly to make prototypes quickly and cheaply before they embark on the expensive business of tooling up a factory to produce the real thing. As 3D printers have become more capable and able to work with a broader range of materials, including production-grade plastics and metals, the machines are increasingly being used to make final products too. More than 20% of the output of 3D printers is now final products rather than prototypes, according to Terry Wohlers, who runs a research firm specialising in the field. He predicts that this will rise to 50% by 2020.


Full Article

No comments:

Google